metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetra-*u*-acetato- $\kappa^{8}O:O'$ -bis{[N-(4methylphenyl)pyridin-2-amine- κN^{1}]copper(II)}(Cu—Cu)

Zainal Abidin Fairuz,^a Zaharah Aiyub,^a Zanariah Abdullah,^a[‡] Seik Weng Ng^{a,b} and Edward R. T. Tiekink^a*

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: edward.tiekink@gmail.com

Received 24 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.012 Å; R factor = 0.077; wR factor = 0.209; data-to-parameter ratio = 13.3.

The complete dinuclear molecule of the title complex, $[Cu_2(CH_3COO)_4(C_{12}H_{12}N_2)_2]$, is generated by a centre of inversion. The Cu^{II} atoms are connected [Cu-Cu = 2.6329 (16) Å] and bridged by four acetate ligands. The distorted octahedral coordination geometry is completed by a terminal pyridine N atom. The amine H atom forms an intramolecular N-H···O hydrogen bond.

Related literature

For related examples of tetrakisacetatobis[(substituted 2aminopyridyl)copper] complexes, see: Fairuz et al. (2010a,b).

‡ Additional correspondence author, e-mail: zana@um.edu.my.

Experimental

Crystal data

 $[Cu_2(C_2H_3O_2)_4(C_{12}H_{12}N_2)_2]$ V = 1595.9 (3) Å³ $M_r = 731.75$ Z = 2Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 7.6285 (9) Å $\mu = 1.39 \text{ mm}^$ b = 11.3242 (13) Å T = 100 Kc = 18.566 (2) Å $0.22 \times 0.13 \times 0.05 \text{ mm}$ $\beta = 95.717 \ (2)^{\circ}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.495, T_{\max} = 0.862$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	211 parameters
$wR(F^2) = 0.209$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 1.31 \text{ e } \text{\AA}^{-3}$
2806 reflections	$\Delta \rho_{\rm min} = -1.29 \ {\rm e} \ {\rm \AA}^{-3}$

11607 measured reflections

 $R_{\rm int} = 0.103$

2806 independent reflections

2203 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu-O2 ⁱ	1.947 (5)	Cu-O4 ⁱ	1.976 (5)
Cu-O1	1.950 (5)	Cu-N1	2.205 (6)
Cu-O3	1.976 (5)		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2	_	
Hydrogen-bond	geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2 n ···O3	0.86	2.21	2.911 (8)	139

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the University of Malaya (grant No. RG027/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5122).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049-m1050.

Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077-m1078.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m1636 [doi:10.1107/S1600536811044333]

Tetra- μ -acetato- $\kappa^{8}O:O'$ -bis{[N-(4-methylphenyl)pyridin-2-amine- κN^{1}]copper(II)}(Cu-Cu)

Z. A. Fairuz, Z. Aiyub, Z. Abdullah, S. W. Ng and E. R. T. Tiekink

Comment

The crystal structure of the title complex, (I), was investigated in connection with structural studies of tetrakisacetatobis[(substituted 2-aminopyridyl)copper(II)] complexes (Fairuz *et al.*, 2010*a*; Fairuz *et al.*, 2010*b*). The complex, Fig. 1, is centrosymmetric and feature four symmetrically bridging acetate ligands and two terminally connected pyridyl-N atoms. These define an NO₄ donor set and the distorted octahedral geometry is completed by a Cu atom, Table 1. The orientation of the *N-p*-tolylpyridin-2-amine ligand is such to enable the formation of an intramolecular N—H···O hydrogen bond, Table 2. The pyridyl-2-amine ligand is twisted with the dihedral angle between the pyridyl and benzene rings being 59.3 (4)°.

Experimental

N-p-Tolylpyridin-2-amine (0.2 g, 1.1 mmol) was dissolved in acetonitrile (15 ml), added to trimethyl orthoformate (10 ml) and the mixture then heated to 50 °C. Copper acetate (0.1 g, 0.5 mmol) dissolved in acetonitrile (15 ml) was added to the solution. The green precipitate that formed, was collected and recrystallized from acetonitrile to give green crystals.

Refinement

Hydrogen atoms were placed at calculated positions (C—H 0.95–098 Å, N–H 0.86 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C)$. The maximum and minimum residual electron density peaks of 1.31 and 1.89 e Å⁻³, respectively, were located 1.08 Å and 0.91 Å from the Cu atom.

Figures

Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The complex is centrosymmetric. The unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, 1 - z.

Tetra-μ-acetato- κ^{8} O:O'-bis{[N-(4- methylphenyl)pyridin-2-amine- κN^{1}]copper(II)}(Cu—Cu)

Crystal data $[Cu_2(C_2H_3O_2)_4(C_{12}H_{12}N_2)_2]$ $M_r = 731.75$ Monoclinic, $P2_1/c$

F(000) = 756 $D_x = 1.523 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$

Hall symbol: -P 2ybc a = 7.6285 (9) Å b = 11.3242 (13) Å c = 18.566 (2) Å $\beta = 95.717$ (2)° V = 1595.9 (3) Å³ Z = 2

Data collection

$\mu = 1.39 \text{ mm}^{-1}$
T = 100 K
Prism, green
$0.22\times0.13\times0.05~mm$

 $\theta = 2.7 - 23.1^{\circ}$

Cell parameters from 2708 reflections

Bruker SMART APEX diffractometer	2806 independent reflections
Radiation source: fine-focus sealed tube	2203 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.103$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.495, T_{\max} = 0.862$	$k = -13 \rightarrow 13$
11607 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.077$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.209$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0765P)^2 + 11.519P]$ where $P = (F_o^2 + 2F_c^2)/3$
2806 reflections	$(\Delta/\sigma)_{\text{max}} = 0.004$
211 parameters	$\Delta \rho_{max} = 1.31 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.29 \text{ e } \text{\AA}^{-3}$

								3
Fractional	atomic	coordinates	and is	otronic or	eauivalent	isotronic	displacement	narameters $(Å^2)$
i raciionai	aionnic	coordinates	unu ist	nopie or	equivalent	isonopie	aispiacemeni	

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu	0.59639 (11)	0.59398 (7)	0.51769 (5)	0.0291 (3)
01	0.7488 (7)	0.4818 (4)	0.5735 (3)	0.0422 (14)
O2	0.5861 (7)	0.3220 (5)	0.5427 (3)	0.0424 (14)
O3	0.4444 (7)	0.6035 (5)	0.5977 (3)	0.0408 (13)
O4	0.2853 (7)	0.4450 (5)	0.5692 (3)	0.0426 (14)
N1	0.7623 (8)	0.7488 (5)	0.5486 (3)	0.0301 (13)
N2	0.5402 (8)	0.8521 (6)	0.5941 (4)	0.0422 (17)
H2n	0.4726	0.7948	0.5785	0.051*
C1	0.7159 (9)	0.3738 (6)	0.5757 (4)	0.0323 (17)
C2	0.8381 (13)	0.2988 (8)	0.6240 (5)	0.052 (2)
H2A	0.8227	0.2158	0.6099	0.079*

H2B	0.8119	0.3085	0.6743	0.079*
H2C	0.9601	0.3227	0.6196	0.079*
C3	0.3262 (10)	0.5337 (6)	0.6077 (4)	0.0330 (17)
C4	0.2223 (13)	0.5545 (8)	0.6707 (5)	0.052 (2)
H4A	0.1985	0.6391	0.6750	0.078*
H4B	0.2897	0.5265	0.7151	0.078*
H4C	0.1105	0.5113	0.6633	0.078*
C5	0.9295 (9)	0.7373 (7)	0.5348 (4)	0.0377 (18)
Н5	0.9643	0.6655	0.5139	0.045*
C6	1.0509 (10)	0.8218 (8)	0.5488 (5)	0.047 (2)
Н6	1.1689	0.8111	0.5378	0.056*
C7	0.9980 (11)	0.9249 (7)	0.5798 (5)	0.047 (2)
H7	1.0804	0.9869	0.5903	0.057*
C8	0.8305 (10)	0.9382 (7)	0.5952 (5)	0.0388 (19)
H8	0.7948	1.0090	0.6170	0.047*
C9	0.7114 (9)	0.8485 (6)	0.5790 (4)	0.0292 (16)
C10	0.4654 (10)	0.9431 (7)	0.6335 (4)	0.0345 (17)
C11	0.4545 (10)	1.0572 (7)	0.6082 (4)	0.0374 (18)
H11	0.5019	1.0777	0.5644	0.045*
C12	0.3738 (10)	1.1416 (7)	0.6472 (4)	0.0395 (18)
H12	0.3673	1.2204	0.6296	0.047*
C13	0.3027 (10)	1.1160 (7)	0.7101 (4)	0.0376 (18)
C14	0.3148 (11)	0.9995 (8)	0.7341 (4)	0.045 (2)
H14	0.2649	0.9779	0.7771	0.054*
C15	0.3975 (11)	0.9159 (7)	0.6965 (5)	0.044 (2)
H15	0.4076	0.8375	0.7147	0.053*
C16	0.2120 (13)	1.2061 (9)	0.7533 (5)	0.058 (2)
H16A	0.2487	1.1952	0.8050	0.087*
H16B	0.0841	1.1961	0.7444	0.087*
H16C	0.2443	1.2857	0.7387	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0282 (5)	0.0182 (5)	0.0409 (5)	-0.0059 (4)	0.0038 (3)	-0.0019 (4)
01	0.034 (3)	0.023 (3)	0.068 (4)	0.000 (2)	-0.007 (3)	0.000 (2)
O2	0.042 (3)	0.023 (3)	0.060 (4)	-0.009 (2)	-0.004 (3)	0.006 (2)
O3	0.044 (3)	0.029 (3)	0.052 (3)	-0.009 (3)	0.017 (3)	-0.002 (2)
O4	0.039 (3)	0.033 (3)	0.058 (4)	-0.014 (3)	0.016 (3)	-0.011 (3)
N1	0.028 (3)	0.021 (3)	0.041 (3)	-0.009 (2)	0.002 (3)	0.001 (3)
N2	0.028 (3)	0.026 (3)	0.073 (5)	-0.008 (3)	0.007 (3)	-0.015 (3)
C1	0.027 (4)	0.019 (4)	0.052 (5)	-0.001 (3)	0.013 (3)	-0.003 (3)
C2	0.057 (6)	0.031 (5)	0.067 (6)	0.008 (4)	-0.005 (5)	0.000 (4)
C3	0.035 (4)	0.022 (4)	0.043 (4)	0.002 (3)	0.007 (3)	0.005 (3)
C4	0.058 (6)	0.040 (5)	0.062 (6)	-0.004 (4)	0.023 (5)	-0.005 (4)
C5	0.020 (4)	0.034 (4)	0.060 (5)	0.000 (3)	0.008 (3)	-0.005 (4)
C6	0.020 (4)	0.044 (5)	0.076 (6)	-0.008 (4)	0.004 (4)	-0.006 (4)
C7	0.033 (4)	0.035 (5)	0.073 (6)	-0.018 (4)	0.004 (4)	-0.007 (4)

C8	0.033 (4)	0.023 (4)	0.060 (5)	-0.003 (3)	0.000 (4)	-0.009 (3)	
C9	0.034 (4)	0.017 (3)	0.036 (4)	-0.002 (3)	-0.002 (3)	-0.002 (3)	
C10	0.031 (4)	0.025 (4)	0.047 (5)	-0.002 (3)	0.001 (3)	-0.008 (3)	
C11	0.036 (4)	0.030 (4)	0.046 (5)	-0.011 (3)	0.008 (3)	0.000 (3)	
C12	0.040 (4)	0.027 (4)	0.052 (5)	-0.002 (3)	0.003 (4)	0.004 (4)	
C13	0.038 (4)	0.030 (4)	0.044 (4)	0.000 (3)	-0.006 (3)	-0.006 (3)	
C14	0.054 (5)	0.040 (5)	0.044 (5)	0.007 (4)	0.016 (4)	0.009 (4)	
C15	0.053 (5)	0.023 (4)	0.058 (5)	0.002 (4)	0.007 (4)	0.010 (4)	
C16	0.060 (6)	0.048 (6)	0.067 (6)	0.009 (5)	0.005 (5)	-0.016 (5)	
Geometric p	arameters (Å, °)						
Cu—O2 ⁱ		1.947 (5)	C4-	-H4C	0.9	800	
Cu—O1		1.950 (5)	C5-	C6	1.3	39 (11)	
Cu—O3		1.976 (5)	C5-	-H5	0.9	500	
Cu—O4 ⁱ		1.976 (5)	C6-	—С7	1.3	80 (12)	
Cu—N1		2.205 (6)	C6-	-H6	0.9	500	
Cu—Cu ⁱ		2.6329 (16)	C7–	C8	1.3	45 (11)	
01—C1		1.249 (9)	C7-	–H7	0.9500		
O2—C1		1.257 (9)	.257 (9) C8—C9		1.376 (10)		
O2—Cu ⁱ		1.947 (5)	C8-	-H8	0.9	0.9500	
O3—C3		1.227 (9)	C10	—C15	1.3	1.361 (11)	
O4—C3		1.254 (9)	C10	—C11	1.3	1.375 (11)	
04—Cu ⁱ		1.976 (5)	C11	—C12	1.3	81 (11)	
N1-C5		1.332 (9)	C11	—H11	0.9	500	
N1—C9		1.337 (9)	C12		1.3	68 (11)	
N2-C9		1.363 (10)	C12	—H12	0.9	500	
N2-C10		1.417 (10)	C13	—C14	1.3	93 (11)	
N2—H2n		0.8600	C13	—C16	1.5	08 (11)	
C1—C2		1.494 (11)	C14	—C15	1.3	68 (12)	
C2—H2A		0.9800	C14	—H14	0.9	500	
C2—H2B		0.9800	C15	—H15	0.9	500	
C2—H2C		0.9800	C16	—H16A	0.9	800	
C3—C4		1.496 (11)	C16	—H16B	0.9	800	
C4—H4A		0.9800	C16	—Н16С	0.9	800	
C4—H4B		0.9800					
O2 ⁱ —Cu—O	1	168.3 (2)	H4A	А—С4—Н4С	10	9.5	
O2 ⁱ —Cu—O	3	88.1 (2)	H4E	В—С4—Н4С	10	9.5	
01—Cu—03	3	90.0 (2)	N1-	-С5-С6	123	3.4 (8)	
O2 ⁱ —Cu—O	4 ⁱ	89.8 (3)	N1-	—С5—Н5	118	8.3	
O1—Cu—O4	4 ⁱ	89.5 (3)	C6-	C5H5	118	3.3	
O3—Cu—O4	4 ⁱ	167.4 (2)	C5-	-C6C7	117	7.4 (7)	
O2 ⁱ —Cu—N	1	96.9 (2)	C5-	-С6—Н6	12	1.3	

С7—С6—Н6

С8—С7—С6

С8—С7—Н7

121.3

119.8

120.5 (7)

94.8 (2)

97.2 (2)

95.3 (2)

O1—Cu—N1 O3—Cu—N1

O4ⁱ—Cu—N1

O2 ⁱ —Cu—Cu ⁱ	84.36 (16)	С6—С7—Н7	119.8
O1—Cu—Cu ⁱ	83.94 (16)	C7—C8—C9	119.4 (7)
O3—Cu—Cu ⁱ	82.90 (16)	С7—С8—Н8	120.3
O4 ⁱ —Cu—Cu ⁱ	84.55 (16)	С9—С8—Н8	120.3
N1—Cu—Cu ⁱ	178.73 (17)	N1—C9—N2	115.8 (6)
C1—O1—Cu	122.9 (5)	N1—C9—C8	120.2 (7)
C1—O2—Cu ⁱ	122.4 (5)	N2—C9—C8	124.0 (7)
C3—O3—Cu	125.0 (5)	C15—C10—C11	119.5 (7)
C3—O4—Cu ⁱ	122.4 (5)	C15—C10—N2	119.1 (7)
C5—N1—C9	119.2 (6)	C11—C10—N2	121.3 (7)
C5—N1—Cu	114.1 (5)	C10-C11-C12	119.0 (7)
C9—N1—Cu	126.7 (5)	C10-C11-H11	120.5
C9—N2—C10	124.8 (6)	C12—C11—H11	120.5
C9—N2—H2n	117.6	C13—C12—C11	122.5 (7)
C10—N2—H2n	117.6	C13—C12—H12	118.7
O1—C1—O2	126.3 (7)	C11—C12—H12	118.7
O1—C1—C2	117.4 (7)	C12—C13—C14	117.0 (7)
O2—C1—C2	116.2 (7)	C12—C13—C16	123.6 (8)
C1—C2—H2A	109.5	C14—C13—C16	119.4 (8)
C1—C2—H2B	109.5	C15—C14—C13	120.8 (8)
H2A—C2—H2B	109.5	C15—C14—H14	119.6
C1—C2—H2C	109.5	C13—C14—H14	119.6
H2A—C2—H2C	109.5	C10-C15-C14	121.1 (7)
H2B—C2—H2C	109.5	C10—C15—H15	119.5
O3—C3—O4	125.1 (7)	C14—C15—H15	119.5
O3—C3—C4	118.2 (7)	C13—C16—H16A	109.5
O4—C3—C4	116.7 (7)	C13—C16—H16B	109.5
C3—C4—H4A	109.5	H16A—C16—H16B	109.5
C3—C4—H4B	109.5	C13—C16—H16C	109.5
H4A—C4—H4B	109.5	H16A—C16—H16C	109.5
C3—C4—H4C	109.5	H16B—C16—H16C	109.5
$O2^{i}$ —Cu—O1—C1	2.3 (16)	C9—N1—C5—C6	-1.1 (12)
O3—Cu—O1—C1	82.8 (6)	Cu—N1—C5—C6	179.3 (7)
O4 ⁱ —Cu—O1—C1	-84.7 (6)	N1—C5—C6—C7	0.7 (14)
N1—Cu—O1—C1	-180.0 (6)	C5—C6—C7—C8	0.2 (14)
Cu ⁱ —Cu—O1—C1	-0.1 (6)	C6—C7—C8—C9	-0.7 (14)
O2 ⁱ —Cu—O3—C3	84.9 (6)	C5—N1—C9—N2	-177.6 (7)
O1—Cu—O3—C3	-83.6 (6)	Cu—N1—C9—N2	2.1 (9)
O4 ⁱ —Cu—O3—C3	4.2 (15)	C5—N1—C9—C8	0.5 (11)
N1—Cu—O3—C3	-178.4 (6)	Cu—N1—C9—C8	-179.8 (5)
Cu ⁱ —Cu—O3—C3	0.3 (6)	C10—N2—C9—N1	172.4 (7)
O2 ⁱ —Cu—N1—C5	-125.9 (5)	C10—N2—C9—C8	-5.6 (13)
O1—Cu—N1—C5	54.6 (6)	C7—C8—C9—N1	0.3 (12)
O3—Cu—N1—C5	145.2 (5)	C7—C8—C9—N2	178.3 (8)
O4 ⁱ —Cu—N1—C5	-35.4 (6)	C9—N2—C10—C15	-118.9 (9)

O2 ⁱ —Cu—N1—C9	54.5 (6)	C9—N2—C10—C11	63.5 (11)
O1—Cu—N1—C9	-125.0 (6)	C15-C10-C11-C12	-0.3 (12)
O3—Cu—N1—C9	-34.5 (6)	N2-C10-C11-C12	177.3 (7)
O4 ⁱ —Cu—N1—C9	145.0 (6)	C10-C11-C12-C13	-0.5 (12)
Cu—O1—C1—O2	1.2 (11)	C11-C12-C13-C14	0.0 (12)
Cu—O1—C1—C2	-176.5 (6)	C11-C12-C13-C16	-179.3 (8)
Cu ⁱ —O2—C1—O1	-1.9 (11)	C12—C13—C14—C15	1.2 (12)
Cu ⁱ —O2—C1—C2	175.9 (6)	C16—C13—C14—C15	-179.4 (8)
Cu—O3—C3—O4	1.0 (12)	C11-C10-C15-C14	1.6 (13)
Cu—O3—C3—C4	-179.5 (6)	N2-C10-C15-C14	-176.1 (8)
Cu ⁱ —O4—C3—O3	-2.1 (11)	C13—C14—C15—C10	-2.0 (14)
Cu ⁱ —O4—C3—C4	178.3 (6)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2n…O3	0.86	2.21	2.911 (8)	139

